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The asymptotic behaviour of the axisymmetric stress-strain state of a non-uniform plate, whose thickness 4 = er, where r is the
distance from the centre of the plate and ¢ is a small parameter, is investigated.

The problem of the theory of elasticity for a non-uniform hollow cone was investigated in [1], and a special case
when the aperture angle of the median surface of the cone equal to /2, which corresponds to a plate of variable
thickness, was mentioned. In this paper we investigate a special form of a conical shell when its median surface
degenerates to a plane. Since this case of degeneration is a special one, all the previous discussion in [1] has to be
repeated.

1. Consider an elastic body in a spherical system of coordinates with the following ranges of variation of the
parameters

rpsrs<ry, n2-e<O0=sn2+g, 0se=2n
In the axisymmetric case the equations of equilibrium have the form
(Lyp+ €Ly, + €23°Liu=0 (1.1)
I[G(Qug + englgen)} - 2GE(ug + EUGlgEMIZEN + £2GA0uq, =0 (1.2)

where u = (u, ue)T; Uy, Ug, Uy are the components of the displacement vector, Ly, are matrix differential operators
of the form

_ 9GO -eGigend-2ke? (G +x)e? tgen—e(dG +x)
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€d(x+A)+2eGd 9Kd — (2Gd + I\ )etgen — ke sec? en
| 2ex Ad+0G -€(G +A)tgen | x 0
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N = (8 - ®/2)e, p = r/ry are new dimensionless variables, € = (8, — 0,)/2 is a small parameter characterizing the
thickness of the plate, and ry = (rr2)"% 1 € [-1, 1].

We will assume that the Lamé elasticity parameters G = G(n), A = A(n) are arbitrary positive piecewise-
continuous functions of the variable n.

Suppose the following boundary conditions are given on the conical boundaries

Ay =0F +29,-2, a=%, i =p K=2G+A

G||\=.+_l = ME‘\]:tl =m* (» (13)
Ogplyes = G(EPY ' (D, +EtgENU N,y = ¢ (D) 14
Here

@ = (0,9, Ggg), M= (EP), F(p))
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M = (ep)'(My + €9 M)
Gao -£G

(K+A)e  KJ—-gAlgENn
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M(): Ml=

A0

We will assume that the loads A*(p), f<(p), ¢=(p) are fairly smooth functions.
Relations (1.2) and (1.4) describe the problem of the torsion of a plate. It will be considered later.

2. To construct non-homogencous solutions of the equation of equilibrium (1.1) which satisfy the non-
homogeneous boundary conditions on the conical surfaces of the plate we can use the methods proposed for a
uniform plate in [2, 3]. However, this is not the only method for removing a load from conical surfaces. To construct
non-homogeneous solutions we will use the first iterative process of the asymptotic method [4].

The solution of problem (1.1), (1.3) will be sought in the form

Uy = €2ty + €l +..), Uy = € gy + Eltgy + ...) 2.1)

Substituting (2.1) into (1.1) and (1.3) we obtain a system, the successive integration of which over n gives relations
for the coefficients of the expansion of u, and ug

gy =@ (P), 16,9 =NLQ(P)—PPLPII+Pa(p) 22)
g =@3(P),  uy =N[Q3(P) = pPI(P)I+ 04 (p)

where y; = (91, 92) and y; = (s, ¢,) are the solutions of the first and second of the following equations, respectively

By =1, BY,=1, 23)
Here 4 X 5
B=E)IB4+O]B3+E)|BZ+E)|B|+Bo
0 0 8 0
By = =
&-a 0 8(g2-8&) g0-8&
B = 3g - &o
P 26 -G+ 12(g - g -1 420 6(gy - 8)
B t, =2G, ~2gy
: 6(G, -G )+3(1 - 1))+ g, 6(gy ~8)+2(G, - Gy) -1
0 2G,
BO=
0 4G -Gy)-g

1, =0:pf (). T, =(pl(p):dph™(p)+2p(ph™(P))),  f(p) =/7(P)-17(p),
i I |
hE)y=h*(P)-h=(p), g =] 4Gk (G +Mmbdn, G.=] Gnfdn, te=] 26hx "' dn
—1 -t -1
Note that (2.3) is a system of Euler-type equations.

3. We will construct homogeneous solutions. Put m* = 0 in (1.3). By seeking solutions of problem (1.1), (1.3)
in the form

Wp.) =p AWMm), W) =(a,b)
we obtain the following non-self-conjugate eigenvalue problem
(Lig +€(z= XLy —eLy) +€* (2= )P Ljy)w=0 @3.1)
(Mo +e(z-)M)Dw=0 for n =+l

The homogeneous solutions corresponding to the first iterative process can be obtained from relations (2.1)—(2.3)
if we put m* = 0 in them. We obtain

© X
1y = eCPEN + 2Go) (g) - 4G,) + O(e) (3.2)

n
u® = cp! [l +£2(j Ak xdx +(2G,) " (4G, - g )M -7? )+0(e3)]
0
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u =eB(m-e2n?16+0%), uf =B(1-e*n?/2+0(")) (3.3)
uD=ph S au, P =0 S Al 64
Here
u® = M(zgo - HA2G) + (240 + ) + (2o + B)(2(Gy - G+ (240 - Vi) - 80 )] -
~(2x0 *+ 3)(zk0 - H)2G) —2Gy 1 + 1)~ (2o — Yilzko - (&1 - 82))-
2240 = )Gy = (240 = 15)* 12 + O(€)) exp(z49 Inp)
ule = {24 + (2R - Yo)(80 — 81) + 2(G, = Gy (24 + 51, = 2G, + O(e? N} exp(zy Inp)
Zyg satisfies the biquadratic equation
16mziy + 82— m)zhg + (16g + m—4n) =0
ms= 8?—&'08'2, n=2Gog, + 680G, - 8¢,G,
=166 - 12GoGy—4G g,

and C, B and A4; are unknown constants.
Solutions (3.2) and (3.3) correspond to the eigenvalues z((,o) = -Y2 and z((,l) =1
We will now consider the following iterative process.
The solution of problem (3.1) will be sought in the form

a(3)(1]) = g(azg + €az; +...), /7(3)(1‘\) = 6(1130 +Eh3 +...) (35)

=€ Bro+ P2 + )

Substituting (3.5) into (3.1) we obtain, after reduction
Y = i
u,(.'” =p /28 h) Fku,(.z_), 11‘(,3) =p Sg X Fk“((;z)
k=1 k=1

) =[poBidWe - PaWi +0(e))exp(e By Inp) 66

3 - ”yr - ’ - ? -
ugy =[=Bid (PoWi - 2BE6W +Brb (mayi)' +O(E)]exp(e ™ Byg Inp)
Po=X@GG + )L, py=@2G)", p;=MAGG + W)
Here y,(n) are the solutions of the generalized Papkovich eigenvalue problem for the non-homogeneous case

‘We will now analyse the stress—strain state corresponding to the different groups of solutions.
The stress state defined by solution (3.2) is equivalent to the principal force vector P directed along the axis of
symmetry. The constant C is then related to P by the following relation

P =21r€'Cl6G, + 2G\G § (g, - 4G)) + O] 3.7

The principal stress vector in the section r = const for the remaining homogeneous solutions is zero.

The stress state defined by solution (3.3) corresponds to the displacement of the plate as a solid.

The stress state defined by (3.4) is equivalent to forces T, and T, and bending moments M, and M,, referred to
the median plane of the plate.

It can be seen from (3.6) that the first terms of the asymptotic expansions of the stresses and strains are identical
with the boundary-layer type solutions for a non-uniform plate of constant thickness [5, 6].

4, We will consider the problem of the removal of stresses from the side surface of the plate. Suppose we are
given the following stresses for p = p, (s = 1, 2)

G, =0(n), Op9=T;M) (41)

The functions 6(n), t(n) are fairly smooth and satisfy the conditions of equilibrium.

As was noted above, the non-self-balanced part of the stresses can be removed using the penetrating solution
(3.2), where the relation between the constant C and the principal force vector P is given by (3.7). We will therefore
assume below that P = 0. Then, using Lagrange’s variational principle, we obtain the following infinite system of
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algebraic equations

kzllnjkck =Nj (j=l,2,) (4.2)
2 1
my = E‘,I exp(z; +z,)Inp, _J’l (@, + Tty Ycosendn

2 |
N; =.\§| exp(z; +34)Inp, _J'I (O,u,; + 7,19, )cOsENciN

(The notation is the same as in [1].)

Using the fact that the parameter € characterizing the thickness of the plate is small, we can construct asymptotic
solutions of (4.2). The matrices of these systems are known from the theory of non-uniform plates of constant
thickness [5, 6] and will therefore not be given here. Numerical versions of the different problems were investigated
using them. The conditions for this system to be solvable are considered in [7].

5. We will now investigate the torsion problem. The solution of problem (1.2), (1.4) will be sought in the form
g = € (U + Ettyy) + E2tig + ...) (CH))

Substituting (5.1) into (1.2) and (1.4) we obtain relations for the coefficients of the expansion of u,

ugo = go(P), U1 =21(P) (5.2)
n ¥ n
Uga =—%n2g0(p)+pcé—(p)j G™' | Gdxdy+pq™(p)| G™'dx+g,(p)
0 0 - 0
2Gy -3G
AOgO =_pq_(p) —S—O——Z—)pq(p)-—

, Agg; =0, A =
Gy 081 082 203

1 n ¥ ¢ - 1
~L0d®) | o8 1 Grdyan - BelPT (@) (pc‘;’ ®) | 67 Gaxan
G S 2 0 o
aP)=q"(P)-q~(p)
We will now consider the problem of constructing homogeneous solutions. Put g*(p) = 0 in (1.4). After separating
the variables, by representing the solution in the form
ttg (p,1) = p* A0 (m)

we obtain the following self-conjugate spectral problem for the function v(n)
Lo=%-22)0
(5.3)
Lv = {€2G-19[G Qv + evtgen)] - 2e7H(Qu + evtgen)igen;  G(Ov + eutgen)ly=z) =0}
It can be proved that the operator L is self-conjugate in Hilbert space L,(~1, 1) with weight G(n)cos en.
Putting g(p) = 0 in (5.1) and (5.2) we obtain homogeneous solutions corresponding to the first iterative
process

4 = Dp~2cosen 549

where D is an unknown constant.
The eigenvalue zy = —32 corresponds to this solution.
Using the next iterative process we will seek the solution of problem (5.3) in the form

W=+ EZUkz Foy, Ip= e“(&w + 828k2 +..) (55)

Substituting (5.5) into (5.3) we obtain

1
| Gn*viydn

00 ] | , ,
Vg2 = X OgyVpos Oy = | [2Gvio~(Gugp) Ioppndn, oy =
I

1
p=0 (8%0 "5’/2')0) -1 4

1
8ya = 2|24 j [2Gvie —(Guko)']”koﬂd"l]

280\ 4 1
Here vy are the solutions of the torsional problem for a non-uniform plate of constant thickness [5, 6]
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-G (GV) =8%gg, GV, =0 (5.6)

Solution (5.4) defines the internal stress—strain state of the plate. The constant D is proportional to the torsional
moments of the stresses acting in the section r = const

1
M, = -6merg D | Geos® endn
-1

The stress state corresponding to the second group of solutions has the form of a boundary layer.
Suppose we are given the following stresses on the side surface of the plate

Cp=Gfm) for p=p, (s=1,2) (5.7)

The non-self-balanced part of the stresses can be removed using the penetrating solution (5.4). We will assume
that M, = 0. By virtue of this assumption we have D = 0.
We will represent the variables in the form

wp= % (D 4 ip Ky, Gosen ©8)
Using (5.8) we obtain
Orp = Eﬁ GlE (2 '*%)P:k_% =Dy (z +3/2)P*(zk+%)]°k(m\/Gcosm (5.9)

To satisfy boundary conditions (5.7) we will expand the specified functions f;(n) (s = 1, 2) in series in eigenfunctions
of the eigenvalue problem (5.3)

L) = E a gV (M)y/Geosen (5.10)
k=1
|
ag = ([, 0) = | Gf,(M)v(M)cosendn
-1

l 9
(V,0,) =8, il =1= | Gui(n)cosendn
-

Substituting (5.9) and (5.10) into (5.7) we obtain the following expression which enables us to find the constants
Ek and Dk

23 (2 +3
[k - % P B~ Gy + ™ H DYy, = 0y

All the solutions obtained above are identical with the solutions for a uniform plate [2, 3] when G = const,
A = const.
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